

Tetrahedron Letters 46 (2005) 8937-8939

Tetrahedron Letters

Nitrosonium (NO⁺) initiated and cation radical-mediated imino Diels-Alder reaction

Yulu Zhou, Xiaodong Jia, Rui Li, Zhengang Liu, Zhongli Liu and Longmin Wu*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China

Received 21 September 2005; revised 14 October 2005; accepted 14 October 2005

Available online 2 November 2005

Abstract—An efficient aza-Diels—Alder reaction of *N*-arylimines with *N*-vinylpyrrolidinone was achieved using nitrosonium tetra-fluoroborate as a cation radical initiator, giving *cis*-4-(2-oxopyrrolidin-1-yl)tetrahydroquinolines in various yields. © 2005 Elsevier Ltd. All rights reserved.

Many new approaches for preparing tetrahydroquinoline derivatives have been developed so far, due to the tetrahydroquinoline skeleton being a fundamental structural unit of numerous alkaloids and biologically active compounds. Among these methods, the imino Diels-Alder reaction between N-arylimines and electron-rich alkenes probably has been the most powerful synthetic entry to tetrahydroquinolines. 1b,c These imino Diels-Alder reactions have been reported to be catalyzed by BF₃·Et₂O and other Lewis acids,² lanthanide triflate, triphenyl phosphonium perchlorate,⁴ 2,3-dichloro-5,6-dicyano-*p*-benzoquinone,⁵ Ti(IV) complex,⁶ chiral copper complex, ⁷ samarium diiodide, ⁸ and protic acids. ⁹ Although cation radical-mediated Diels-Alder reactions have been studied, 10 a requirement for developing synthesis routes accessible to tetrahydroquinolines is still in high demand.¹¹

Nitrosonium (NO⁺) is a strong one-electron oxidant with a rather high reduction potential of $E_{\rm red}^0=1.50~{\rm V}$ (vs SCE). ¹² Nitric oxide (NO) is its redox partner. The lower reorganization energy of the pair NO⁺/NO in acetonitrile, 70 kcal mol⁻¹, argues that NO⁺ is predicted to be an effective nonbonding electron transfer oxidant. ¹³ Our interest in NO⁺ has promoted us to investigate NO⁺-participating in reactions. ¹⁴ Based on previous works on this kind of reaction, we have performed the NO⁺-induced and cation radical-mediated aza-Diels–Alder reaction of *N*-arylimines (1) with *N*-vinylpyrrolidinone (2), which gave tetrahydroquinolines in various yields.

In a typical experiment, 0.5 mmol of N-arylimines (1) and 0.6 mmol of N-vinyl-2-pyrrolidinone (2, 1.2 equiv) were dissolved in 20 mL of anhydrous dichloromethane (CH₂Cl₂). At room temperature, 25 µmol of nitrosonium tetrafluoroborate (0.05 equiv) pasted onto a piece of glass was added to the above well-stirred solution. The reaction completed in about 2 h, giving the single products, cis-4-(2-oxopyrrolin-1-yl)tetrahydroquinolines (3) in various yields (Table 1). All the products were characterized by IR, MS, ¹H and ¹³C NMR, in good accord with literatures. ¹⁵ The production of only one isomer indicated that reactions occurred highly regiospecifically (Scheme 1). The yields of 3 appear good or satisfactory, except for entry 10, where the substituent of o-Me seems to be unfavorable for this reaction. Prolonged reaction time of 25 h for 1j gave a yield of 21%, while 50% of 1j decomposed to the corresponding benzaldehyde and aniline and the residual part of 1j was left in the reaction mixture.

It is found that NO⁺ itself will oxidize 1 to the corresponding aldehydes and benzenediazonium salts. ^{14c} However, our present results indicate that the existence of an electron-rich dienophile such as 2 will greatly change the reaction pattern of NO⁺. The 2 has a lower oxidation potential of 1.12 V (vs SCE)^{15a} for its C–C double bond than 1 ($E_{ox} = 1.50-1.89$ V vs SCE)¹⁵ for its C–N double bond. Therefore, a single electron oxidation of 2 with NO⁺ will be expected to occur at its C–C double bond prior to the C–N double bond of 1, giving the cation radical, 2⁺·. A test of α -methylstyrene used as a dienophile instead of 2 was carried out. Yet, no reaction under consideration took place. The reason is attributed to the higher oxidation potential of

^{*}Corresponding author. Tel.: +86 (0)931 8912500; fax: +86 (0)931 8625657; e-mail: nlaoc@lzu.edu.cn

Table 1. NO⁺ initiated Diels-Alder reactions of N-arylimines with N-vinylpyrrolidinone in CH₂Cl₂ at room temperature

Entry	Arylimine			<i>t</i> (h)	Yield of cis-3 ^a (%)
		X	Y		
1	1a	p-OCH ₃	Н	3	72
2	1b	p-CH ₃	p-NO ₂	1.5	91
3	1c	Н	p -OCH $_3$	2	89
4	1d	Н	Н	1	94
5	1e	Н	p-Cl	1.5	79
6	1f	Н	p-NO ₂	1	64
7	1g	<i>p</i> -Br	H	1	95
8	1h	p-Cl	Н	1	96
9	1i	p-Cl	$p ext{-} ext{NO}_2$	2	93
10	1j	o-Me	Н	25	21

^a Isolated yield based on 1.

Scheme 1.

 α -methylstyrene ($E_{ox} = 1.72 \text{ V vs SCE}$). ^{15b} The stoichiometry study shows that a very small NO⁺ amount of 5% will start reactions, which reveals that NO⁺ plays a role of initiator in the reaction. The electron transfer (ET) reaction initially occurs between NO⁺ and the C-C double bond of 2, giving 2^{+} . The attack by the C-N π -electrons of 1 on 2⁺ results in a nucleophilic addition, forming $[1+2]^+$. π -Electrons on the benzene ring linked directly to the nitrogen atom of $[1+2]^{+}$ then undergoes an intramolecular nucleophilic attack at its cationic center to give a cyclization compound, cis-3⁺. The resulting $cis-3^+$ sequentially undergoes an electron transfer reaction with 2, providing cis-3 and 2⁺, respectively. The 2⁺ so produced will participate in the reaction. Studies indicated that there was an 1:1:1 mol relationship between 1, 2, and 3. A more detailed mechanism is proposed as illustrated in Scheme 2.15 The fact that the o-Me substituent in 1j greatly slowed the reaction indicated that the intramolecular nucleophilic cyclization was the rate-limiting step for the imino Diels-Alder reaction.

As an example, further study was carried out to extend the substrate scope for **1d** and *N*-vinylcarbazole. The oxidation potential of the latter is 1.30 V vs SCE. ^{15a} The reaction occurred to give a mixture of cis and trans isomers in the ratio of 4:1, determined by ¹H NMR spectra, and in 95% total yield. The steric block of carbazole ring promotes the formation of trans isomer.

Acknowledgment

The authors are grateful to The National Natural Science Foundation of China for the financial support (No. 20272022).

References and notes

 (a) Weinreb, S. M. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 401–409; (b) Boger, D. L.; Weinreb, S. M. In Hetero-Diels-Alder Methodology in Organic Synthesis; Academic: San Diego, 1987; Chapter 2; (c) Boger, D. L.; Weinreb, S. M. In Hetero Diels-Alder Methodology in Organic Synthesis; Academic: San Diego, 1987; Chapter 9; (d) Qiang, L. G.; Baine, N. H. J. Org. Chem. 1988, 53, 4218–4222.

- (a) Sjöholm Timén, Å.; Somfai, P. J. Org. Chem. 2003, 68, 9958–9963; (b) Barluenga, J.; Mateos, C.; Aznar, F.; Valdés, C. Org. Lett. 2002, 4, 1971–1974; (c) Shi, M.; Shao, L.; Xu, B. Org. Lett. 2003, 5, 579–582; (d) Cheng, D.; Zhou, J.; Saiah, E.; Beaton, G. Org. Lett. 2002, 4, 4411–4414; (e) Kametani, T.; Takeda, H.; Suzuki, Y.; Honda, T. Synth. Commun. 1985, 15, 499–505.
- (a) Twin, H.; Batey, R. A. Org. Lett. 2004, 6, 4913–4916;
 (b) Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis 1995, 1195–1202;
 (c) Yamanaka, M.; Nishida, A.; Nakagana, M. Org. Lett. 2000, 2, 159–161;
 (d) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749–1760.
- Nagarajan, R.; Chitra, S.; Perumal, P. T. Tetrahedron 2001, 57, 3419–3423.
- Bortototti, B.; Leardini, R.; Nanni, D.; Zanardi, G. Tetrahedron 1993, 49, 10157–10174.
- 6. Sundararajan, G.; Prabagaran, N.; Varghese, B. *Org. Lett.* **2001**, *3*, 1973–1976.
- Mancheño, O. G.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2004, 126, 456–457.
- 8. Collin, J.; Jaber, N.; Lannou, M. I. *Tetrahedron Lett.* **2001**, *42*, 7405–7407.
- (a) Hashimoto, N.; Yasuda, H.; Hayashi, M.; Tanabe, Y. *Org. Proc. Res. Dev.* 2005, 9, 105–109; (b) Grieco, P. A.; Bahsas, A. *Tetrahedron Lett.* 1988, 29, 5855–5858.
- (a) Bauld, N. L. *Tetrahedron* 1989, 45, 5307–5363; (b) Bauld, N. L.; Bellville, D. J.; Harirchain, B.; Lorenz, K. T., ; Pabon, P. A., Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H.-S.; Marsh, B. K. *Acc. Chem. Res.* 1987, 20, 371–378; (c) Schmittel, M.; Burghart, A. *Angew. Chem., Int. Ed.* 1997, 36, 2550–2589.
- (a) Behforouz, M.; Ahmadian, M. Tetrahedron 2000, 56, 5259–5288; (b) Peglow, T.; Blechert, S.; Steckhan, E. Chem. Commun. 1999, 433–434; (c) Wiest, O.; Steckhan, E. Angew. Chem., Int. Ed. Engl. 1993, 32, 901–903; (d) Gürtler, C. F.; Blechert, S.; Steckhan, E. Angew. Chem., Int. Ed. Engl. 1995, 34, 1900–1901.
- (a) Lee, K. Y.; Kuchynka, D. J.; Kochi, J. K. *Inorg. Chem.* 1990, 29, 4196–4204; (b) Bontemplli, G.; Mazzocchin, G.-A.; Magno, F. *J. Electroanal. Chem.* 1974, 55, 91–100.
- Eberson, L.; Radner, F. Acta Chem. Scand. 1984, B38, 861–870.
- (a) Chen, W.; Jin, M. Z.; Liu, Z. L.; Wu, L. M. Chin. Chem. Lett. 1999, 10, 991–994; (b) Wu, L. M.; Chen, W.; Liu, Z. L. Res. Chem. Intermed. 2001, 27, 219–224; (c) Zhou, Y. L.; Huo, C. D.; Miao, S.; Wu, L. M. Chin. Chem. Lett. 2004, 15, 801–804.
- (a) Zhang, W.; Guo, Y.; Liu, Z.; Jin, X.; Yang, L.; Liu, Z.
 L. Tetrahedron 2005, 61, 1325–1333; (b) Jia, X.; Lin, H.;
 Huo, C.; Zhang, W.; Lu, J.; Yang, L.; Liu, Z. L. Synlett 2003, 1707–1709.